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SUMMARY

The adoption of a suitable pumping–injecting well network and the human enhancement of the activity
of soil bacteria, whose metabolism contributes to degrade and transform many pollutants in non-toxic
substances, may be crucial in the process of remediation of contaminated soils. Organic contaminant
transport in a subsurface aquifer and its biological degradation kinetics is numerically addressed by using
a four contaminant species model. A numerical approach is proposed, that is based on a cell-centre
�nite volume method for the system of advection–dispersion equations of contaminants with a mixed-
hybrid �nite element method for the solution of a single-phase Darcy’s equation. The e�ectiveness of
the method and its accuracy in retaining the main physical properties of the continuous mathematical
model is illustrated by simulating the time evolution of contaminant concentrations in a set of realistic
scenarios. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Soil contamination has recently become a problem of major social concern, because a wide
range of pollutant agents of di�erent chemical nature and toxicity have been found in subsur-
face aquifers. Pollution sources are either accidental events, like spills and leaks, or common
human activities, like disposal of urban sewage, industrial wastes, and the use of pesticides
and fertilizers in agriculture, see References [1–6]. The contaminants in a subsurface aquifer
are subject to complex physical and chemical processes, such as dispersion, advection by
groundwater �ow, chemical reactions and biological degradation due to soil microorganisms.
The groundwater �ow is described by a single-phase Darcy’s equation, while the subsurface

transport of di�erent chemical species are modelled by a set of coupled advection–dispersion–
reaction equations [7].
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The biological degradation depends on the microorganism population whose metabolism
is a�ected by the availability in soils of substrates like organic carbon, electron acceptors—
oxygen and nitrogen—and nutrients [8, 9]. The organic carbon needed to sustain bacterial life
is generally present in soil as well as other nutrients—such as phosphates, nitrates, ammonia—
which also contribute to microbial survival. In many cases, however, human activities may
provide an additional supply both of organic carbon and of nutrients. Organic carbon is
furnished in the form of accidental spills of organic contaminants, such as benzene and its
derivatives or more hazardous compounds. Industrial fertilizers and manure used in agricultural
activities, on the other hand, are examples of possible external supplies of nutrients. The
bacterial population is normally stable because it dynamically tends to an equilibrium state
in which its growth rate is balanced by its decay rate. When the concentration of the species
which take part in microbial metabolism are subject to a signi�cant increase due, for example,
to an external supply, the bacterial population increases of several orders of magnitude and
tends to a new equilibrium state. The remarkable fact is that the bacterial metabolic processes
e�ectively use hazardous organic pollutants and reduce them to harmless byproducts, such as
CO2 and H2O [10]. In this context, a remediation strategy can be devised which relies on
the enhancement of the biodegradation activity, see Reference [11] for a literature review on
this topic. The biodegradation kinetics models proposed in the literature are usually classi�ed
in three distinct classes, respectively, termed free-bacteria, microcolony-based and bio�lm
models [12, 13].
The simplest models belong to the �rst class [14]. They basically assume that bacteria exist

as individual particles within the aqueous phase or adsorbed by soil grains. No assumption
is made on the microscopic con�guration and distribution of bacteria in soil pores, and on
the way the organisms are grouped together on the solid pore surface. These latter facts
are considered irrelevant for the macroscopic description of bacterial population growth and
decay. In the second class of models, bacteria do not exist as individual particles but in small
discrete colonies, or microcolonies, attached to the surface of soil grains. Growth and decay
of the biomass contained in microcolonies are formulated either by taking that the bacterial
colony dimension can grow by consumption of organic substrate and electron acceptors or by
assuming the colony dimension constant and varying their concentration, i.e. the number of
colonies per unit volume [15]. The main feature of the models in the third class is that the solid
particles constituting the aquifer material are covered by a bio�lm within which consumption
of the substrates and electron-acceptors takes place [12, 13, 16]. The key processes are the
mass exchange between bulk �ow and the bio�lm and the internal degradation of organic
substrates. A more detailed discussion of the similarities and di�erences between these models
is beyond the scope of the present work. We refer the interested reader to the discussion in
Reference [17]—see also the bibliography therein—where it is shown that under a set of
simplifying assumptions the three approaches reduce to an essentially equivalent description
of the biodegradation process. This, however, is true only for very simple cases.
Our approach relies on the four-species model documented in References [15, 18] in the

context of the more general microcolony-based concept. The main feature of this model lies
in its capability of describing how the metabolism of subsurface microbes can be enhanced
by concurrent metabolization of oxygen, nitrogen and nutrients. From the computational
viewpoint, it is a compromise between the simpler free-bacteria model which tends to over-
estimate the degradation extent, and the more accurate but also more complex and expensive
bio-�lm model.
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The numerical approximation of the complete mathematical model is a research issue, and
many di�erent aspects make the numerical simulation of a bioremediation process challenging.
The most signi�cant topics that have been investigated in the present work are listed.

• Treatment of highly heterogeneous soil: the value of the permeability can di�er for four
orders of magnitude or more between two adjacent mesh cells.

• Advection-dominated transport: the model species concentrations in the groundwater bulk-
�ow can feature strong gradient regions when sharp concentrations fronts move throughout
the computational domain.

• Non-linear coupling e�ects: even if the soil is saturated, the growth=decay rate of the
bacterial population depends on the contaminants which di�use within the microcolonies
from the groundwater bulk �ow. It also exerts its in�uence on the bulk-�ow contaminant
concentrations via a set of reactive source terms in the transport equations.

These issues have already been investigated by the authors in these previous works. In
Reference [13] we presented some preliminary results on the discretization of the �ow and
transport equations by using mixed �nite elements and �nite volumes. The coupling of the
contaminant transport equations with a bacterial population equation and its numerical dis-
cretization was investigated in Reference [20]. In this work the model species are passively
advected by a constant velocity and pressure �elds. In order to solve the Darcy’s equation we
adopted a high-order accurate mixed �nite element scheme (BDM1). Despite its accuracy,
this approach is not appropriate to simulate non-linear phenomena requiring a frequent update
of the velocity and pressure �elds because of the high computational cost. A better approach
from this viewpoint is based on the mixed-hybrid scheme proposed in Reference [21]. In
this work we validated the method on the standard quarter-of-�ve-spots problem, focusing the
attention on the treatment of the soil heterogeneity.
The work presented in the current paper copes with the bioremediation of a �eld-size aquifer

that has been contaminated by an accidental leak out. Di�erent bioremediation techniques and
human intervention strategies are numerically investigated to predict the clean-up time for an
almost complete removal of pollutants.
According with our previous experience we consider the following numerical approach. The

steady groundwater bulk �ow is approximated by using the lowest-order mixed-hybrid �nite
element method. This approach yields an approximation to the steady velocity �eld that is more
accurate than those provided by straightforward di�erentiation of the conforming �nite element
approximation of the pressure �eld. In particular, we emphasize that the mixed-hybrid �nite
element method ensure local—i.e. cell-wise—mass conservation, while the conforming �nite
element approximation lacks local mass conservation. The contaminant transport equations are
approximated in space by an unstructured triangle-based �nite volume method and advanced
in time by a semi-implicit two-stage Runge–Kutta scheme. A TVD stability condition is
imposed by a multidimensional limiting procedure. The resulting scheme is formally second-
order accurate, conservative, and capable of capturing strong solution gradient fronts moving
at the correct physical propagation speeds.
The species interactions are taken into account in the full-species model by solving

iteratively their non-linear interaction coupling.
The outline of the paper follows. In Section 2, we review the mathematical model describ-

ing single-phase bulk �ow, contaminant transport and bacterial kinetics. The discretization
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method is summarized in Section 3. We address here the �nite volume discretization of the
contaminant transport equations as well as the mixed-hybrid �nite element approximation of
the Darcy’s phase pressure and velocity �elds. The numerical schemes are presented in details
in Reference [22]. In Section 4 we present the results of a set of numerical investigations that
assess the performance of possible remediation strategies. We consider also di�erent networks
of extraction=injection wells, whose running mode has been selected on the basis of the plume
location and the soil remediation status. The conclusions follow in Section 5.

2. THE MATHEMATICAL MODEL

All the partial di�erential equations presented in the following sub-sections are formulated in
�, which is a two-dimensional polygonal domain with boundary @�.

2.1. Transport equations

Transport phenomena are mathematically described by a system of NDS coupled advection–
dispersion–reaction equations, where NDS is the number of dissolved species. In divergence
form they can be written as follows:

Ri
@Ci
@t
+ div(uCi −Di(u)∇Ci)=Bi; i=1; : : : ; NDS (1)

The variables Ci in Equation (1) represent the bulk �ow concentration of each transported
species; the terms Ri are the retardation factors, which take into account chemical adsorption
processes, the terms Di(u) are the dispersion tensors, which depend on the groundwater veloc-
ity �eld u. The r.h.s. source terms Bi describe the coupling between the species concentrations
transported in the bulk �ow and the ones within microcolonies. The model adopted for these
terms is presented in Section 2.3.
Equation (1) is supplemented by a set of appropriate boundary conditions, such as inlet,

outlet and no-�ow, and initial solution states to specify the application problems.

2.2. The Darcy’s equation

Groundwater bulk �ow in an heterogeneous saturated soil is mathematically formulated by
the Darcy’s equation [23]

u = −K∇p
div u = f

(2)

The pressure �eld is indicated by p and the groundwater velocity �eld by u, K(x) is the
transmissivity tensor, and f(x) a source=sink term. Equations (2) are completed by a set of
suitable boundary conditions of Neumann=Dirichlet-type, modelizing inlet=outlet and no-�ow
boundary con�gurations.

2.3. The bioremediation model

Microcolony-based models assume that bacteria reside and act within microcolonies, described
as a set of patches attached to soil grains [15]. From the bulk phase, chemical species can
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BIOREMEDIATION IN CONTAMINATED AQUIFERS 5

reach microcolonies via di�usive mass exchange. Depending on the mass-transfer coe�cient,
concentrations within microcolonies govern the degradation rate kinetics and can be signi�-
cantly di�erent from those in the bulk phase.
In this class of models, the term Bi of Equation (1) is expressed in terms of a di�usive

mass exchange from the bulk to the microcolony phase

Bi=Nc�iAc
(Ci − ci)

�
; i=1; : : : ; NDS (3)

where �i is the mass-exchange coe�cient between bulk �ow and microcolonies, Ac is the
contact area of one microcolony for the mass di�usion process, � is the thickness of the
boundary layer between bulk �ow and microcolonies, ci is the concentration of the component
i in the microcolonies and Nc is the number of microcolonies per unit volume.
The assumption that the biodegradation process works essentially at a steady-state regime

yields the following form for the r.h.s. terms Bi in Equation (3):

�iAc
(Ci − ci)

�
=�0; imc

NEA∑
k=1
Yi; k

[
NiDS∏
j=1

cj
Kj; k + cj

]
I k−1b +QiI i−1b ; i=1; : : : ; NDS (4)

where �0; i are the maximum rate coe�cients, mc is the mass of a microcolony, Yi; k are
the yield coe�cients which account for the stoichiometry and e�ciency of degradation, Kj; k
are the half-saturation constants, and I k−1b are the inhibition functions [15]. In Equation (4)
the symbol NEA denotes the number of electron acceptors and NiDS the number of dissolved
species involved in the degradation of the ith species. The term Qi is non-zero only when the
component i is an electron acceptor—for instance oxygen or nitrate. In this case, it takes the
form

Qi= �i
ci

Ki + ci
; i=1; : : : ; NEA (5)

where �i is the electron acceptor coe�cient for the maintenance energy of bacteria, and Ki is
the electron acceptor saturation constant.
This degradation equation states that the total amount of a compound entering a microcolony

in a given interval of time is equal to the amount of species that is degraded in the same
interval. The rate of degradation and, consequently, the concentration within microcolonies,
is roughly proportional to the concentration outside the colonies. The terms Qi introduce into
the model the consumption of oxygen due to bacterial decomposition [15, 18] as a �rst-order
decay term.
Bacterial kinetics is modelled by the following time-dependent di�erential equation that

describes the microcolony population dynamics

1
Nc
@(�Nc)
@t

=
NDH∑
i=1

[
�0; i

NEA∑
k=1
Yi; k

(
NiDS∏
j=1

cj
Kj; k + cj

)]
− kcd ; (6)

where kcd is the population decay constant, NDH is the number of dissolved hydrocarbons—
organic substrates—and � is the porosity of the medium [15, 18].
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6 C. GALLO AND G. MANZINI

3. THE NUMERICAL MODEL

3.1. The �nite volume discretization of the transport equations

The numerical discretization in the framework of the �nite volume scheme is de�ned on the
same mesh Th(�) used for the mixed-hybrid scheme of the previous section. The index h is
the maximum diameter of the NT triangles forming the mesh, i.e. h= maxT∈Th(�) hT , where hT
is the length of the longest edge of the triangle T . As usual, these triangulations are assumed
regular and conforming for h→ 0 in the sense speci�ed in Reference [24, p. 132].
Equation (1) is reformulated in a cell-wise integral form by integrating them on each

triangular cell T and then applying the Gauss divergence theorem to transform the spatial
divergence term into a balance of edge integral �uxes. Let us introduce for every T ∈Th(�)
the vector UT , whose elements are the cell-averaged concentrations of the transported species

UT |i= 1
|T |
∫
T
Ci dT; i=1; : : : ; NDS (7)

The semi-discrete �nite volume approximation is

|T |R dUT
dt

+
∑

e∈�(T )
Ge(ue; ŨT ; ŨTe ; ne) +

∑
e∈�(T )

He(ue; ŨT ; ŨTe ; ne)

+
∑

e∈�′(T )
F(bc)e =

∑
q
!T; qST (ŨT (xT; q)) for every T ∈Th(�) (8)

where the diagonal matrix R=diag(R1; : : : ; RNDS) collects the retardation factors, and for every
cell T ,

• |T | is the measure of its area, and @T its boundary,
• �(T ) is the subset of its internal edges; these latters are the edges that T shares with
an adjacent mesh cell indicated by Te, so that for every e∈�(T ) there exists a cell
Te ∈Th(�) such that e= @T ∩ @Te,

• �′(T ) is the subset of the edges of T located at the boundary of the computational
domain; that is, for every e∈�′(T ) we have e= @T ∩ @�.

The cell interface �ux integral is evaluated by using suitable advective and dispersive
numerical �uxes across the edge e, that are

Ge(ue; ŨT ; ŨTe ; ne)|i ≈
∫
e
n · uU|i dl (9)

He(ue; ŨT ; ŨTe ; ne)|i ≈
∫
e
n ·D|i(u)∇U|i dl (10)

and the numerical �ux function F(bc)e at boundary edges.
The numerical �ux vector functions Ge and He introduced in Equations (9) and (10) depend

on ue, which is the value of the velocity �eld u at the midpoint of the edge e shared by the
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BIOREMEDIATION IN CONTAMINATED AQUIFERS 7

triangles T and Te, and on ne, which is the normal to e oriented outward from T and inward
into Te. They also depend on ŨT and ŨTe , which are the piecewise-polynomial representations
of the solution in T and Te. This functional dependence implies the usage of pointwise values
of the approximate solution at quadrature nodes on e. These values are reconstructed from the
cell averages by an interpolation procedure at each time step and a multidimensional slope
limiter must be considered to keep under control the numerical oscillations, see the appendix
of Reference [20].
The integral advective term Ge is discretized by a standard upwind �ux splitting approach,

while the integral dispersion term He, which involves second-order derivatives in space, by a
central di�erentiation algorithm. Further details about the derivation and the accuracy of this
method are discussed in Reference [22].
The numerical �ux function F(bc)e at the boundary edge e= @T ∩ @� depends on the trace

ŨT |e of the reconstructed solution ŨT within the unique boundary triangle T , and in some
suitable form on a set of external data U(bc)e . The integral source term ST (ŨT (xT; q)) is ap-
proximated by a surface quadrature rule with nodes {xT; q} within the triangle T and weights
{!T;q}.
The time-marching scheme is obtained by approximating the time derivative of UT—which

appears in the �rst term in the semi-discrete formulation (8)—by �rst-order �nite di�erences

dUT (t)
dt

∣∣∣∣
t=tn

≈ U
n+1
T −UnT
�t

(11)

where Un+1T and UnT are the cell-averaged solutions in T at times t
n+1 and tn, and �t= tn+1−tn.

This yields a full discrete semi-implicit scheme where resulting symmetric linear algebraic
problem is solved by a standard Krylov solver, such as a preconditioned conjugate gradient
method. Higher-order accuracy in time is attainable by a semi-implicit Runge–Kutta method,
built by two distinct stages of the same form [22].

3.2. The mixed-hybrid discretization of the Darcy’s equation

The coupled system of Equations (2) in the unknowns p and u is discretized by a mixed-
hybrid �nite element approach. For a detailed exposition of mixed and mixed-hybrid �nite
element methods we refer the reader to References [25, 26], while for the description of the
numerical formulation adopted in this work we refer to Reference [20].
In the mixed-hybrid �nite element method adopted in the present work we approximate the

velocity �eld by using the lowest-order RT0 discontinuous elements, which is composed by
two-dimensional functions whose restriction to any mesh triangle T is of the form

u|T ≈ �T
(
x
y

)
+
(
�T
�T

)
(12)

where the real scalar coe�cients �T , �T and �T depend on the triangle T . The pressure �eld is
approximated using triangle-based piecewise constant functions while the pressure trace over
each cell-interface by the edge-based piecewise constant ones.
With respect to Reference [20], the present work di�ers substantially in the choice of the

discrete functional space used for the approximation of the velocity �eld u. We use here
the lowest-order RT0 discontinuous elements instead of the BDM1 ones of Reference [20],
where a full linear dependence on the position is considered. Notice also that the continuity
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8 C. GALLO AND G. MANZINI

condition of the normal component of the velocity �ux is relaxed, and a weaker condition is
imposed by a set of suitable Lagrange multipliers which approximates the pressure traces.
We experienced in fact that RT0 elements o�ers a satisfactory accuracy level at a reduced

computational cost with respect to BDM1 elements, see Reference [21]. These latter ones are
formally more accurate but also signi�cantly more demanding from a computational viewpoint
because they involve twice the number of unknowns to be stored and calculated compared to
RT0. This issue is particularly important because in this work the pressure and the velocity
�elds are iteratively updated at each time step, see Reference [12], while in the work described
in Reference [20] they were calculated only once at the beginning of each simulation and
then used to transport passively the concentration �elds of the contaminant species.

3.3. Reaction source terms and microbial population equation

The reaction terms described in Equation (6) are computed by solving a set of nodewise
non-linear systems via a Newton iterative method with fractional multistep integration
scheme [20].

4. NUMERICAL EXPERIMENTS

In this section, we illustrate the performance of the proposed mathematical and numerical
model in predicting the e�ectiveness of a remediation intervention to reduce the contaminant
concentration of a polluted aquifer. The aquifer is characterized by a constant porosity �=0:3
and a heterogeneous isotropic transmissivity, whose principal values are assumed to be con-
stant on each triangle of the computational mesh, and di�er triangle by triangle in the range
between 10−5 and 1 m2=day, in accord with an equiprobability stochastic distribution.
The �rst test case that we present in this paper consists in the initial soil contamination

phase and is labelled by T1. The soil contamination is due to the leakage of Cyclo-Aromatic-
Hydrocarbons (CAH), which forms a plume transported by the groundwater �ow �eld and
spread in the saturated aquifer.
The next three test cases, labelled by T2, T3 and T4, describes three possible interventions

for the remediation phase. Basically, we consider a network of pumping wells that extract
the polluted water and convey it to a treatment plant, where the contaminant is removed.
The puri�ed water, which may be enriched in oxygen and nutrients to stimulate soil bacterial
growth, is then re-injected in the aquifer via a network of injection wells. Figure 1 sketches
the water treatment procedure.
All of the wells can be selectively used either in injection or in extraction mode and are all

supposed to be connected via pipelines to the water treatment plant. The proper position and
con�guration of the wells have been chosen by investigating their capability of intercepting
the contaminated plume transported by the groundwater �ow in a set of preliminary simula-
tions. These simulations are based on the four species model proposed by Molz et al. [15]
and Widdowson et al. [18], and described in Reference [20]. For the sake of completeness,
we report the model in the �nal appendix, giving also the values of the parameters used in
the simulations. The contaminant CAH is the organic substrate S of the model, while the
other species involved are the dissolved oxygen in the soil, O, some compounds chemically
based on nitrates, N, and some ammonia-based compounds which constitute a generic nutrient
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wells
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Water
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O 2

Recycled
water
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waste
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From pumping
wells
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Figure 1. Technical scheme of the remediation plant installed aside of the well network for polluted
water treatment and clean water enrichment.

supply A. The initial concentration of the organic substrate and the dissolved oxygen follows
a random distribution, with values in the range [0:1; 1]g=m3. The initial distribution of nitrates
and ammonia-based compounds takes instead a constant initial value of 1000 g=m3. Figure 2
depicts the benchmark case and the position of the wells on the aquifer—labels ‘A’–‘M’—in
the remediation phase. Point ‘A’ is also the location of the leaking tank when contamination
occurs. A constant gradient of �p=�x=0:04 is superimposed on the subsurface �ow �eld
in the aquifer, which is thus oriented along the x direction. These model problems are com-
pletely de�ned by a suitable Dirichlet boundary condition, with an hydraulic pressure head
given as a function of x. For each simulation run, we report in Table I the time step �t and
the �nal time Tmax at which the simulation ends up. During the initial pollution phase (T1),
the plume of CAH spreads with an irregular, or ‘�ngered’, front because of the stochastic
soil heterogeneity which establishes several preferential paths. Figure 3 illustrates the situ-
ation at the intermediate time t=410 days, when the contaminant reaches the boundary of
the aquifer and begins to dissolve into the water of the con�ning river. A steady-state so-
lution is reached at t=600 days, shown in Figure 4, when the contaminant plume does
not spread further and the transport of the contaminant along some preferential paths is thus
established.
In the three simulations T2, T3, and T4, the remediation intervention takes place after

t=410 days since the pollution started, that is before the contaminant reaches the river con-
�ning with the aquifer. We suppose that the contaminant source is removed and the clean-up
of the soil is performed by using a network of extraction=injection wells. For all of the
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10 C. GALLO AND G. MANZINI
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Figure 2. Planar sketch of the well locations.

Table I. Simulation run parameters.

Run label

Parameter T1 T2 T3 T4

�t (days) 0.5 0.2 0.05 0.05
Tmax (days) 410 2800 500 700

simulations we show the spatial distribution of the organic substrate, CAH, and of the dis-
solved oxygen (DO)—the species O in our four species model.
In simulation T2 we consider the so-called pump-and-treat method. The wells G through

M of the pipeline network are active and extract the contaminated water, which is then
conveyed to water treatment plants. The �ow boundary conditions are the same as for the
soil contamination phase, except at the location corresponding to the pumping wells: here, a
decrease of 0:5 m in pressure head with respect to the natural gradient condition is imposed
in order to modify the �ow pattern for contaminant recovery. As in the soil contamination
phase, just one chemical species is considered in the simulation, by neglecting the e�ects of
the other species. The results of this simulation are shown in Figure 5 at the intermediate
time t=1450 days, that is about 4 years after the removal of the contaminant source, and in
Figure 6 at the �nal time of t=2500 days—about 7 years. The soil heterogeneity still a�ects
the e�ectiveness of the removal, but the spreading e�ect is not as evident as in the T1 phase.
However, when the simulation terminates, the removal of the organic contaminant plume has
not yet been fully completed.
The bioremediation interventions considered in this paper, simulations T3 and T4 are es-

sentially based on the stimulation of the growth of the subsurface bacterial population by
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BIOREMEDIATION IN CONTAMINATED AQUIFERS 11

Figure 3. Contamination phase (T1): pollutant concentration at t=410 days.

Figure 4. Contamination phase (T1): pollutant concentration at t=600 days—steady state.
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12 C. GALLO AND G. MANZINI

Figure 5. Pump-and-treat remediation (T2): concentration at t=1450 days.

Figure 6. Pump-and-treat remediation (T2): concentration at t=2500 days.
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BIOREMEDIATION IN CONTAMINATED AQUIFERS 13

increasing the concentration of oxygen and nutrients dissolved in soil. We assume that these
chemical substances be directly supplied via injection of ‘enriched water’ into the aquifer. Part
of the wells are, thus, used for extracting the contaminated water to be conveyed to treat-
ment plants. Part or all of the remaining wells are used for re-injecting water with chemical
additives into the soil. The e�ectiveness of this strategy strongly depends on the extraction–
injection operational mode chosen in the well con�guration pattern, which is di�erent for the
two simulations T3 and T4.
In simulation T3 the wells A–D work in injection mode—an overpressure of 0:5 m is

imposed. Nutrients and nitrates are delivered in excess, since their solubility in water is much
larger than the one of oxygen, which is kept at a constant concentration of 20 mg=l. The
remaining wells work in extraction mode, at the same pressure condition of the ‘pump-and-
treat’ method. The results of this simulation are shown in Figure 7 at the intermediate time
t=178 days and in Figure 8 at the �nal time t=360 days.
The e�ectiveness of this approach with respect to the ‘pump-and-treat’ method is clearly

documented by the contaminant removal achieved in T3 after 1 year which is almost com-
parable to the one achieved in T2 after 7 years, see for instance Figures 8 and 6. The major
di�erence in the contaminant distribution �eld is indeed in the region where dissolved oxygen
has been delivered. However, the intervention simulated in T3 cannot be considered satisfac-
tory because a ‘dead-zone’ develops in the triangular region de�ned by the wells ‘F-G-H’,
all working in pumping conditions, thus preventing the complete de-contamination of the
site.
A di�erent well pattern has been experimented in simulation T4, wells A–D are dismissed,

wells E and F inject nutrients and oxygen, and wells G–M still work in extraction mode as
in T3. Figure 9 shows the contaminant and dissolved oxygen distributions at the intermediate
time t=600 days. We remark that the major part of the residual contaminant mass in the
aquifer is removed. A complete removal of the contaminant is achieved at the �nal time
t=875 days, as illustrated by Figure 10.
Finally, Figure 11 reports the residual contaminant mass in the aquifer as a decreasing

function of time and summarizes the performance of the di�erent remediation approaches T2,
T3 and T4. This �gure emphasizes how the bioremediation strategy can be more e�ective than
the simple pump-and-treat method. Although both intervention strategies T2 and T4 achieves
an almost complete removal of the contaminant, the remediation time is very di�erent in
the two cases. Nevertheless, bioremediation can also be sensitive to the well con�guration
network chosen for the intervention, as shown by the performance curve T3.

4.1. Model performance

In this section, we report some information about the simulation costs in terms of computer
time.
All the simulations described in the previous section were run on a computational mesh

composed of about 5000 triangles using an IBM RISC 6000=390 machine. The simulations
involving the full four-species model are very expensive and take about 12 h, while single-
species calculations require typically 80–90 min.
The CPU cost is quite high in the former case because all of the non-linear interactions

among the di�erent species must be taken into account. These interactions yield a 4× 4 non-
linear systems which must be solved for each cell at each time step. Using a Newton iterative
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Figure 7. Bioremediation by �rst well con�guration (T3): concentration at t=178 days.

scheme this takes approximately 40% of the total CPU costs. Moreover, the �nite volume
method requires a limited piecewise-linear reconstruction of each unknown �eld to ensure
second-order accuracy in space. The limiting procedure is needed to ensure monotonicity of
reconstructed gradients and to preserve non-linear stability [20]. The computational cost of
the reconstruction procedure is also signi�cant, being about 35% of the total CPU cost of the
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Figure 8. Bioremediation by �rst well con�guration (T3): concentration at t=360 days.

simulation. This increment is evident when the full species model is considered instead of the
single-species one.
The CPU cost is also in�uenced by the way the simulation is run. For instance, in the

initial contamination phase T1, the pollutant is transported by a steady groundwater �ow
�eld, which is computed only once at the beginning of the run. Instead, simulation T2
still involves a single-species model, but makes usage of a transient groundwater velocity
�eld, which is updated every 50 transport steps, thus resulting in a 10–15% more expensive
computation.
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Figure 9. Bioremediation by second well con�guration (T4): concentration at
t=600 days (200 days after the switch).

5. CONCLUSIONS

In this work, we illustrated a numerical model to simulate the bioremediation process in
heterogeneous saturated aquifers and its application in devising di�erent intervention strategies
on a �eld-size scenario. The method is particularly suitable in detecting possible dead-zones
due to the heterogeneity of the medium and depending on the well location and operational
mode.
Our approach is based on the discretization of a multispecies transport model coupled

with a bacterial degradation kinetics of Monod type. The microcolony description of bacterial
activity is considered. The bulk �ow velocity is approximated by a mixed-hybrid �nite element
method while the species transport equations are discretized using a semi-implicit cell-centre
�nite volume scheme.
The performance of the method is assessed by simulating both the contamination process

and several remediation strategies on a realistic subsurface scenario.
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Figure 10. Bioremediation by second well con�guration (T4): concentration
at t=875 days (475 days after the switch).

A comparison between the numerical experiments reported in this work clearly illustrates
the advantage of a combined biological-hydraulic intervention with respect to the simple
hydraulic one in the case of a stochastically heterogeneous soil. The remediation time in
the former case is shown to be about one-half that of the latter case. This implies that the
operational costs may be substantially reduced.
When the aquifer is strongly heterogeneous, preferential �ow zones may appear and large

spots of contaminant may remain isolated if the simplest pump-and-treat remediation strategy
is adopted. Contaminant trapping e�ects due to heterogeneities may also be present when
remediation is enhanced by bacterial activity. In such a case, an optimal well con�guration
has a dramatic impact on the e�ectiveness of the human intervention. For these reasons, it is
evident that a better understanding of how and where trapping zones may appear is critical
in devising an e�ective remediation strategy.
In order to study the near-source contamination zone, that is the zone surrounding an or-

ganic contaminant spill, a multiphase model is needed, given the presence of an immiscible
organic phase. It is informative to say that some preliminary work [12, 27] has been performed
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Figure 11. Contaminant residual mass removal vs. remediation time.

by the authors to develop a suitable numerical approach to multiphase simulations as well as
considering the problem of pore-clogging in bio�lm models. However, these topics will be
the issue of future work.

APPENDIX A

The kinetic degradation rates of concentrations within microcolonies in Equation (3) for the
four species model used in all of the simulations are
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and the microbial growth=decay equation is
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where

— �S =1:03× 10−5 (m2=day), �O =2:19× 10−5 (m2=day), �N =1:50× 10−5 (m2=day),
�A =1:86× 10−5 (m2=day) are the mass exchange coe�cients for the bulk �ow and
the microcolony species concentrations;

— Ac = 3:768× 10−10 (m2), is the contact area of the microcolony for the mass di�usion
process;

— �=5:0× 10−4 (m) is the thickness of the boundary layer between bulk �ow and
microcolonies;

— mc = 2:86× 10−11(kg) is the microcolony mass;
— �0;O =4:34 (1=day) and �0;N =2:9 (1=day) are the speci�c aerobic and anaerobic

growth rates;
— YS;O =0:278 and YS;N =0:5 are the heterotrophic yield coe�cients;
— YO =0:278 (–) and YN =0:5 (–) are the coe�cients for the oxygen and nitrogen
synthesis of heterotrophic biomass;

— �0 = 0:0402 (–) and �N =0:1 (–) are the oxygen and nitrogen use-coe�cients for
maintenance energy of bacteria;

— YA;O =0:122 and YA;N =0:122 are the ammonia–nitrogen coe�cients for producing
biomass under aerobic and anaerobic conditions;

— KS;O =40 (g=m3), KO =0:77 (g=m3), and KA;O =1 (g=m3) are the substrate, oxygen,
and ammonia–nitrogen saturation constants under aerobic conditions;

— KS;N =40 (g=m3), KN =2:6 (g=m3), and KA;N =1 (g=m3) are the substrate, nitrogen,
and ammonia–nitrogen saturation constants under anaerobic conditions;

— KO′ =0:77 (g=m3) and KN′ =2:6 (g=m3) are the oxygen and nitrogen saturation
constants;

— I 0b = 1 and I
1
b =Kb;N=(Kb;N + cO) are the inhibition functions of the oxygen-based and

the nitrogen-based respiration, and Kb;N =0:0001 (g=m3) is the inhibition coe�cient;
— kd;O =0:02 (1=day) and kd;N =0:02 (1=day) are the bacterial death-per-unit-time decay
constants for aerobic and anaerobic metabolism.
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